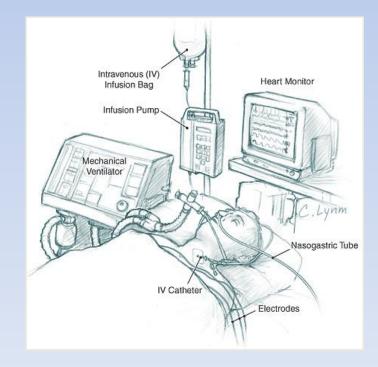
IN GOD WE TRUST

Ventilator Modes

EEEE

30 30

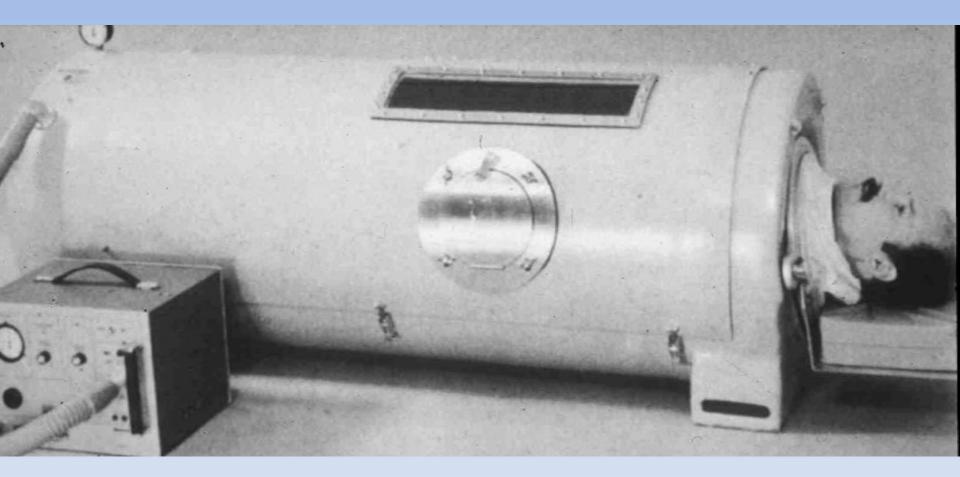
10 020


5 50 50

K.Shadvar MD FCCM

Indication

Indication


- Hypoxic respiratory failure
- Hypercapneic respiratory failure
- Protect airway
- refractory shock
- Reduction of ICP
- GA

Classification

- 1. Negative-pressure ventilators ("iron lungs")
 - Non-invasive ventilation first used in Boston Children's Hospital in 1928
 - Used extensively during polio outbreaks in 1940s 1950s "Iron Lung" Cuirass (breastplate) ventilators
 - Physiological but impractical
- 2. Positive-pressure ventilators
 - Invasive ventilation first used at Massachusetts General Hospital in 1955
 - Now the modern standard of mechanical ventilation Unphysiological but practical

Iron lung polio ward at Rancho Los Amigos Hospital in 1953

- 1. Invasive ventilation
 - applied through a endotracheal tube or a tracheotomy
- 2. Non invasive ventilation (NIPPV)
 - -applied to patient's mouth or nose
 - Advantages: less patient discomfort, reduced need for sedation, and a lower incidence of ventilator associated pneumonia and sepsis

- Total ventilatory support
- Patient's own breathing pattern is totally replaced by the ventilator (sedation and respiratory muscle paralysis)
- Partial ventilatory support
- *The ventilator* provides a partial amount of minute ventilation

Conventional

- 1. deliver a VT higher than the dead space volume
- 2. apply a positive pressure at the airway opening

• Unconventional

- application of a VT lower than the dead space volume (1-3 mLlkg)
- use of external gas exchangers that bypass the lung and the heart
- High-Frequency Ventilation
- High-Frequency jet ventilation
- High-Frequency osilatory Ventilation (active expiration)
- Extracorporeal Membrane Oxygenation
- Extracorporeal Carbon Dioxide Removal
- Liquid Ventilation (perfluorocarbons)

Volume-cycled modes

deliver a fixed volume at variable pressure

Pressure-cycled modes

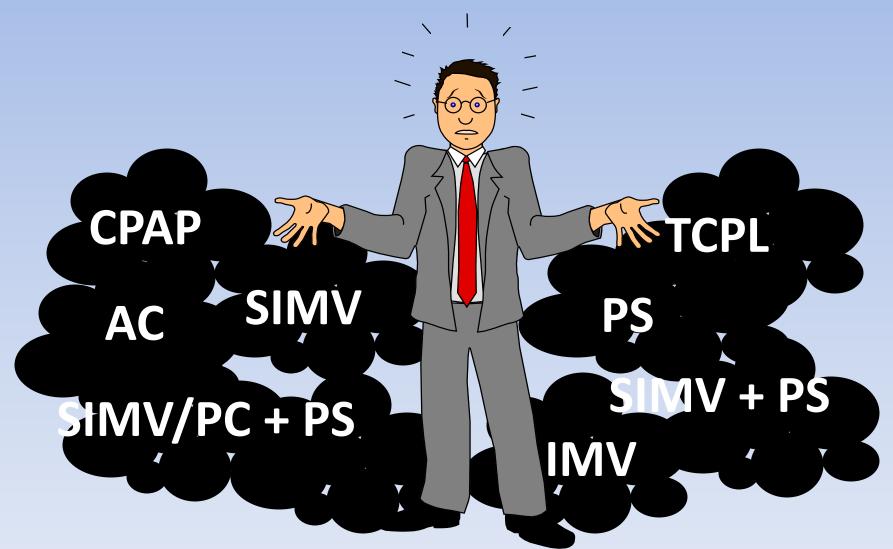
deliver a fixed pressure at variable volume

• Dual

deliver a fixed pressure & volume

Volume ventilation

- حجم جارى بدون توجه به مقاومت وكمپليانس ريه ثابت
 - فلوى دمى ثابت
 - فشار راه هوایی متغیر
 - Pressure limit برای جلو گیری از پنوموتوراکس
 - ارجح در افزایش ICP


Pressure Ventilation

- PIP & Plateau pressure are constant
 - TV is variable •
- خطر افزایش فشار راه هوایی و پنوموتوراکس کم
 - Flow is decelerating •

Table 75–6 Characteristics of volume-targeted ventilation (VTV) and pressure-targeted ventilation (PTV)

Variable	ντν	ΡΤν
Trigger	Patient or Time	Patient or Time
Limit	Flow	Pressure
Cycle	Volume	Time or Flow
Tidal Volume	Constant	Variable
Peak Pressure	Variable	Constant
Modes	Assist/Control (synchronized) intermittent	Assist/Control (synchronized) intermittent
	Mandatory ventilation	Mandatory ventilation Pressure support

Modes of ventilation

Which mode you are familiar

Variables of ventilation:

- 1. How it initiates a breath (trigger)
- 2. How it sustains a breath (Target or Limit)
- 3. How it terminates a breath (cycle)

Triggers

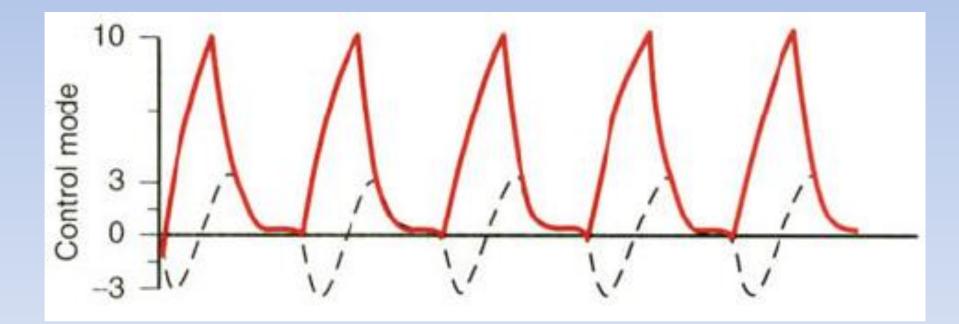
- 1. Time trigger
- 2. Pressure trigger
- 3. Flow trigger

Which one is better?

MODES

- 1. CMV Continuous MandatoryVentilation
- 2. A/C Assist/Control ventilation
- 3. IMVIntermittent mandatory ventilation
- 4. SIMV synchronized IMV
- 5. MMV Mandatory minute ventilation

MODES

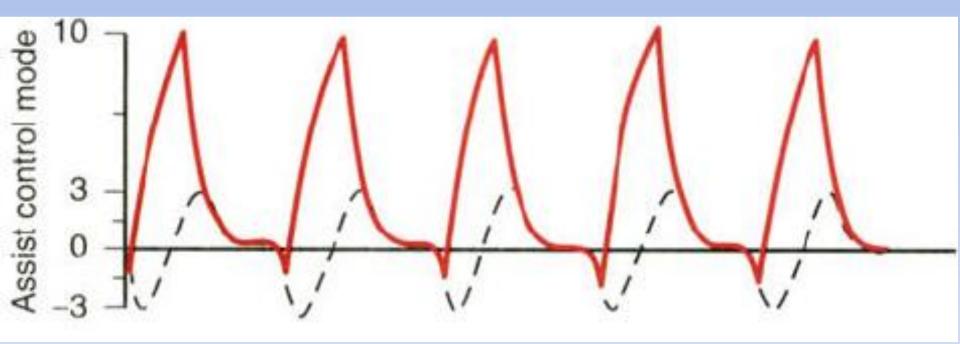

- 6. PCV pressure control ventilation
- 7. **PSV** pressure support ventilation
- 8. PAV Proportional-Assist Ventilation
- 9. BIPAP Bilevel positive airway pressure

10.APRV Airway Pressure-Release Ventilation

MODES

11.ASV Adaptive Support Ventilation12.NAVA Neurally adjusted ventilatory assist13.PRVC pressure regulated volume control

ContinuousMandatoryVentilation (CMV)



Continuous MandatoryVentilation (CMV) /IPPV

MODE	trigger	limit	cycle
CMV	Time	Volume	Time

- ICP GA, GBS, Deep sedation
 - Fighting •
 - Sedation •
 - Muscular atrophy
 - Sync نبودن
- Flow بین تنفس های دستگاه وجود ندار د

Assist/Control ventilation

Assist/Control ventilation

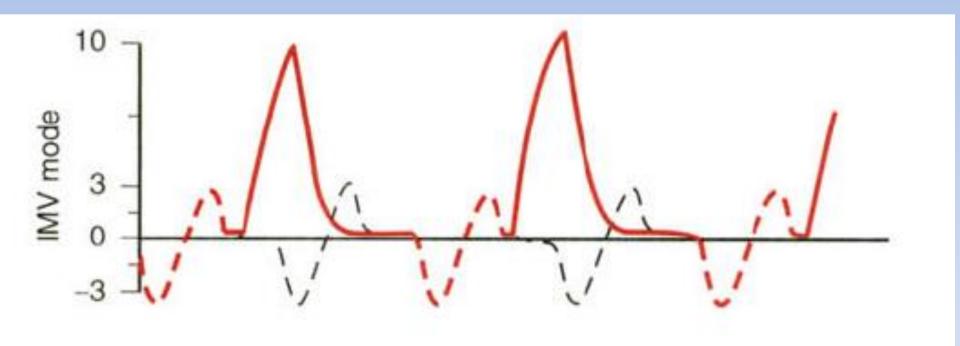
MODE	trigger	limit	cycle
A/C	patient	Volume	time

- Fighting &sedation
- Indication: برای بیمارانی که تنفس ارادی دارند ولی ضعف advision عضلانی دارند

Disadvantages

- Dys-synchrony
- Respiratory alkalosis
- Dynamic hyperinflation
- Auto-PEEP & Hypotension

- Patient 70 kg
- A/C , TV:700 cc, Rate: 10/min
- Patient RR=0

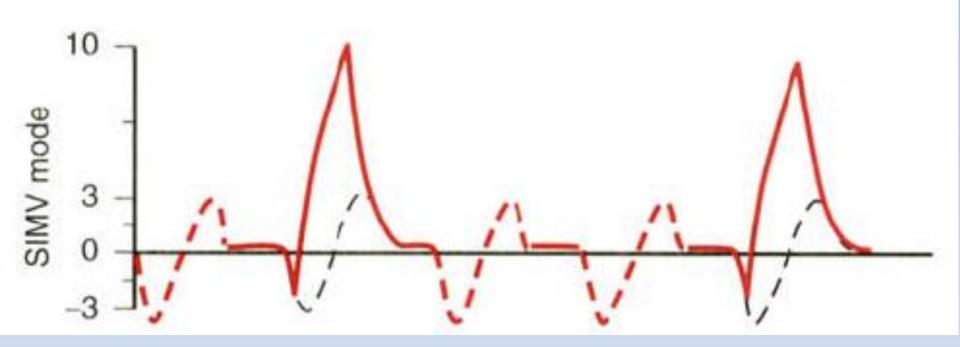

Vent RR = 10

• Patient RR=10

Vent RR = 10

• Patient RR=20

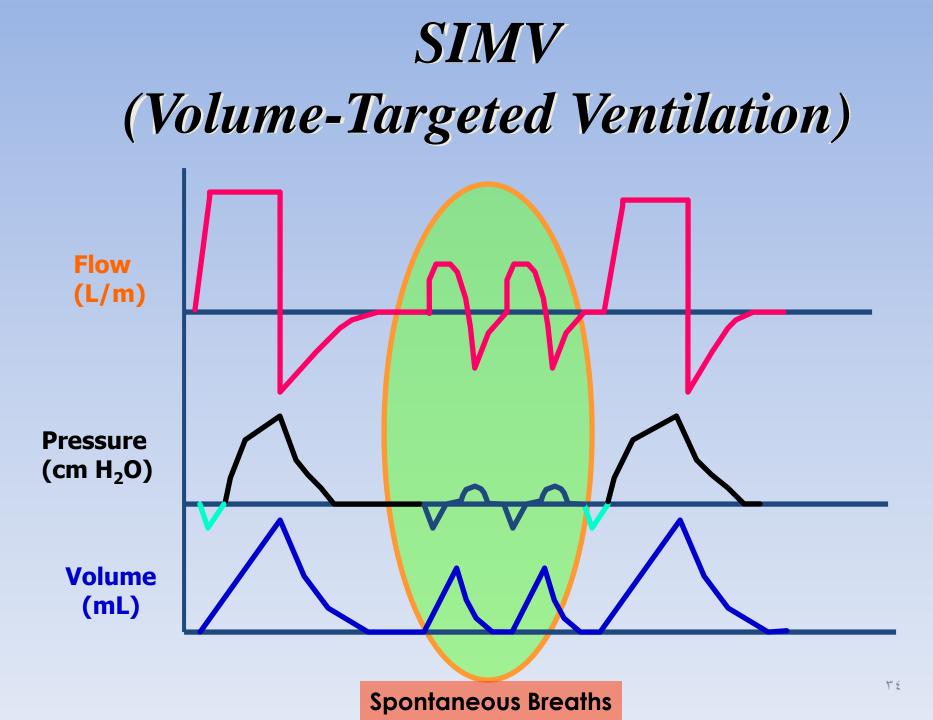
Intermittent mandatory ventilation (IMV)



Intermittent mandatory ventilation (IMV)

MODE	trigger	limit	cycle
IMV	Time	Volume	Time

- CMV + Continuous FGF
- Spontaneous ventilation
- Indication: Weaning



SIMV

MODE	trigger	limit	cycle
SIMV	Patient	Volume	Time

- A/CMV + Demand valve
- Synchronized
- Fighting
- Sedation

 چرا در SIMV بمدت طولانی بیمار خسته می شود ولی در IMV بمدت طولانی بیمار خسته نمی شود؟

IMV FGF
SIMV Demand Valve

MMV

Mandatory minute ventilation

MODE	trigger	limit	cycle
MMV	Patient	Volume	Time

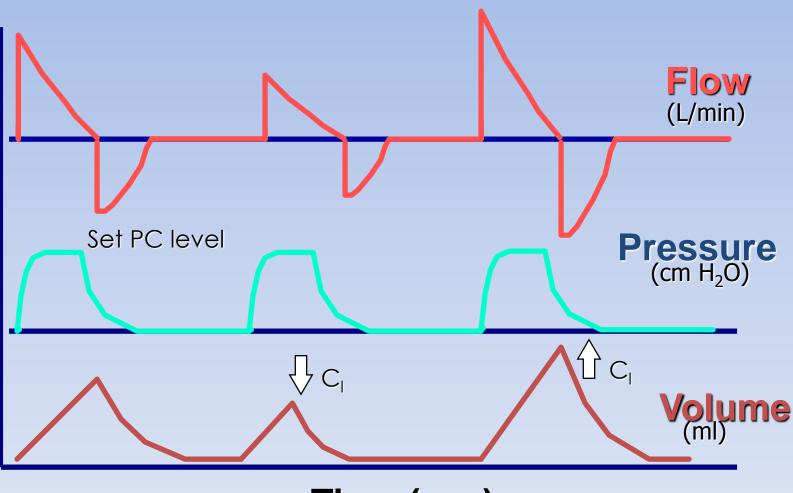
• Dräger

- minute ventilation is set
- Weaning mode in which the ventilator delivers mandatory breaths only when the pt's spontaneous minute ventilation falls below a preset target.

MMV

• Disadvantage :

- TV=500 RR=10 MV=5000
- TV=250 RR=20
- TV=100 RR=50 MV=


Pressure Control Ventilation

MODE	trigger	limit	cycle
PCV	Time	Pressure	Time

Disadvantage

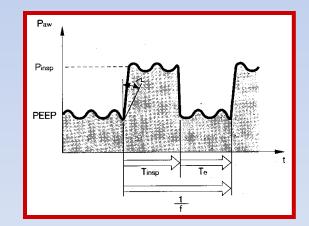
- •Requires frequent adjustments to maintain adequate $V_{\rm E}$
- •Pt with noncompliant lungs may require alterations in inspiratory times to achieve adequate $T_{\rm V}$

Pressure Control Ventilation

Time (sec)

Pressure-support ventilation (PSV)

MODE	trigger	limit	cycle
PSV	Patient	Pressure	Flow


- Pressure support levels in excess of 10 cmH2O may be needed to overcome the resistance of an endotracheal tube, particularly with small (<7 mm) endotracheal tubes.
- At higher levels of pressure support (>10 cmH2O), tidal volume is augmented and respiratory rate slows.
- Usually used during recovery phase of respiratory failure as a weaning mode
- not appropriate for *apneic pt's*

مود مستقل نمی باشد.

BiPAP

MODE	trigger	limit	cycle
BiPAP	Patient	Pressure	Time

- BiLevel (PCV+)
- Preset RR, IT,
- Typical settings are an IPAP of 8 to 20 cm H2O and an EPAP of 4 to 5 cm H2O.
- The IPAP should be titrated to give an expiratory tidal volume of about 7 ml/kg and a respiratory rate of less than 25.

PAV & PAV+ Proportional assist ventilation

MODE	trigger	limit	cycle
PAV	Patient	Pressure	Flow

 the ventilator generates pressure in proportion to patient-generated flow and volume

AirwayPressureReleaseVentilation (APRV)

Advantages

- Lower peak airway pressures
- Recruitment and stabilization of collapsed alveoli(intrinsic PEEP due to short expiratory phase)
- Reduced deadspace ventilation
- Allows spontaneous breathing

Disadvantages

- Tidal volume varies with changes in the resistance and compliance properties of the lung
- Synchrony
 airway pressure release is not synchronized with spontaneous breathing

ASV

Adaptive Support Ventilation

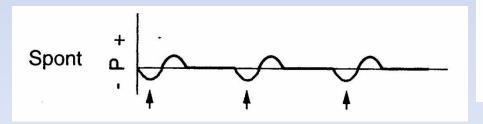
MODE	trigger	limit	cycle
ASV	Patient	Pressure	Time

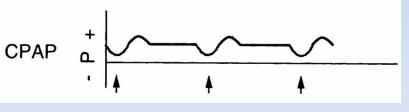
- It response to changes in both respiratory impedance (elastance and resistance) and the patient's spontaneous efforts.
- the operator enters the patient's <u>body weight</u> and sets the desired percentage of <u>minute ventilation</u>.
- adjusts inspiratory pressure, inspiratory-expiratory time ratio, and mandatory respiratory rate to maintain the target minute ventilation and respiratory rate.

NAVA

Neurally adjusted ventilatory assist

- electrical activity of the diaphragm is measured by means of an electrode array inserted into a nasogastric tube and placed in the lower esophagus; this information is then used to control the ventilator to generate flow, volume, and pressure
- Not routine use
- Not available in most ventilators
- Servo I




CPAP

Continuous Positive Airway pressure

is a spontaneous breath mode, with the baseline pressure elevated above zero.

- □ Advantages
 - Improves oxygenation by increasing FRC
 - Decreases physiological shunting
 - Improved oxygenation will allow the FIO2 to be lowered
 - Increased lung compliance
- Disadvantages
 - Increased incidence of pulmonary brotrauma
 - Potential decrease in venous return
 - Increased work of breathing
 - Increased intracranial pressure

PEEP

Positive End Expiratory Pressure

PEEP is the application of positive pressure to change baseline variable during CMV, SIMV, IMV and PCV. PEEP is primarily used to improve oxygenation in patients with severe hypoxemia.

Advantages

- Improves oxygenation by increasing FRC
- Decreases physiological shunting
- Increased lung compliance
- Disadvantages
 - Increased incidence of pulmonary brotrauma
 - Potential decrease in venous return
 - Increased work of breathing
 - Increased intracranial pressure

PEEP

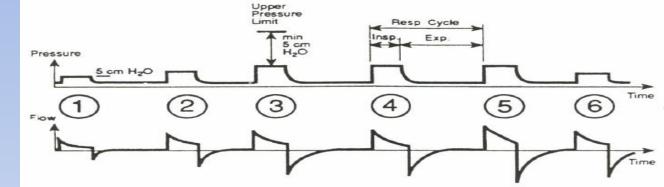
- *Physiologic PEEP*: A small amount of applied PEEP (3 to 5 cmH2O) to overcoming the decrease in FRC caused by bypass of the glottic apparatus during endotracheal intubation.
- **Supraphysiologic PEEP**: (>5 cm H2O) is applied most often in three settings, for the following reasons:
 - In patients with obstructive airways disease and dynamic hyperinflation, to offset the effects of auto-PEEP.
 - In hypoxemic respiratory failure with acute lung injury, to improve oxygenation and prevent worsening lung injury .
 - In patients with cardiogenic pulmonary edema, to improve oxygenation and improve cardiac performance.

Contraindications

- No absolute contraindications
- Relative contraindications:
 - 1. intracranial abnormalities
 - 2. unilateral lung disease
 - 3. hypotension
 - 4. Hypovulemia
 - 5. pulmonary embolism
 - 6. bronchopleural fistula

DUAL MODES

 Table 75–7
 Partial list of available dual-control


 modes of positive-pressure ventilation

Adaptive Pressure Ventilation (APV) Volume-Assured Pressure-Support Ventilation (VAPSV)

Auto-Flow Pressure Augmentation Pressure-Regulated Volume Control (PRVC) Variable Pressure Control Volume Control Plus (VC+) Volume Support

PRVC

pressure regulated volume control

- the clinician sets a target tidal volume and maximum pressure level. The ventilator attempts to achieve the volume target using a pressure-control format at the lowest possible airway pressure
- If the target volume is exceeded, the pressure limit is decreased by 1-3 cmH20 on each breath until the target tidal volume is reached

Volume	•pressure
• RR	•RR
• TV	•Pressure
• I/E ratio	•Ins time
• Flow	•Fio2
• flo2	•Trigger
 Trigger (ACMV,SIMV) 	•PEEP
• PIP alarm	
 PS(SIMV) 	
• PEEP	

SETTING

• Tidal volume

- 10 mL/kg for patients who do not have lung disease
- less than 10 mL/kg In patients with lung disease (obstructive airways disease, fibrotic lung disease, post lung resection).
- In (ALI) or (ARDS), an initial 6 mL/kg ideal body weight
- Respiratory rate
- Initiate between 12 and 16 breaths/minute
- In ALI or ARDS begin between 18 and 22 breaths/minute
- Once the desired tidal volume has been determined , incrementally increase (or decrease) the respiratory rate to achieve our pH and PaCO2 goals.
- Other approaches
 - during SIMV adjust the RR to achieve at least 80 percent of the patient's minute ventilation
 - During A/C ventilation, the RR may be set four breaths per minute lower than the patient's spontaneous rate

SETTING

- **Flow rates** of 60 L/min are often sufficient; however, higher rates of inspiratory flow are frequently necessary to produce adequate gas exchange, especially in patients with obstructive airways disease
- trigger sensitivity of -1 to -3 cmH2O or 1-3 L/min
- *FiO2: initiate 100%*
- **PEEP: 5 cmH2O**
- I:E Ratio: 1:2
- PS: 10-15
- Sigh
 - $-\,$ a breath that has a greater volume than the preset V_{T} , usually 1.5 to 2.0 times the V_{T}
 - <u>No longer routinely used</u>

Suggested guidelines for mechanical ventilation

- Maintain plateau pressure < 30 cm H2O
- Avoid dynamic hyperinflation (auto-PEEP).
- Use PS during spontaneous breaths.
- Use lowest FIO2 to maintain acceptable arterial PaO2.
- Keep patient comfortable.

-Anxiety, pain, WOB (RR < 20-30)

Any question?

www.326267627765 colm