SYSTEMATICREVIEW

Open Access

Neuroprotection through adiponectin receptor agonist: an updated meta-analysis of preclinical Alzheimer's disease studies

Tannaz Novinbahador¹, Amin Abbasi², Roghayeh Molani-Gol³, Leili Aghebati-Maleki¹, Amirhesam Pouraghaei⁴ and Hassan Soleimanpour^{5*}

Abstract

Background Alzheimer's disease (AD) is a leading cause of dementia, imposing a substantial burden on individuals and society. While existing therapies can reduce the symptoms of AD, they do not offer genuine therapeutic effectiveness. Adiponectin Receptor Agonist (ADN-R Ag) has been proposed as a novel therapeutic agent for AD. This study aims to evaluate its efficacy in treating AD model mice.

Methods A systematic search of PubMed, Scopus, Cochrane Library, and Web of Science was conducted up to May 3, 2025. Research investigating the impact of ADN-R Ag on cognitive performance and associated molecular pathways in Alzheimer's disease models, specifically APP/PS1, P301S, and 5XFAD mice, was incorporated. The Alzheimer's disease models in the study were male and ranged in age from 5.5 to 8 months. Studies evaluating the effect of ADN-R Ag on AD model mice through cognitive function tests and related molecular mechanisms were included. Methodological quality assessment was performed using the CAMARADES tool for animal studies. The meta-analysis was performed following Cochrane guidelines.

Results Six articles were included for the review. ADN-R Ag significantly improved cognitive function in the meta-analysis. The weighted mean difference of ADN-R Ag was 21.75 (95% Cl: 16.61–26.88; p < 0.001) for alternation rate percentage in the Y-maze, 20.46 (95% Cl: 11.41–29.51, p < 0.001) for novel object exploration time percentage in the novel object recognition (NOR) test, -15.83 (95% Cl: -23.33 to -8.32, p < 0.001) for escape latency in the Morris water maze (MWM), and 13.89 (95% Cl: 8.84–18.94; p < 0.001) for target quadrant time in the probe test. Additionally, ADN-R Ag was reported to mitigate AD pathology by reducing Aβ depositions through inhibition of GSK3β/BACE1/NF-κB pathway, suppressing neuronal inflammation by suppressing microglial and astrocytes activity and reducing and IL1β and TNFα levels, enhancing autophagy, and improving mitochondrial function with significant involvement of the AMPK pathway.

Conclusion Based on the current study, ADN-R Ag has therapeutic effects on AD. However, considering the complex underlying molecular mechanisms and limited prior studies, further research is needed.

Keywords Adiponectin receptor agonist, Alzheimer, Neuroprotection, Meta-analysis

*Correspondence: Hassan Soleimanpour h.soleimanpour@gmail.com

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Novinbahador et al. BMC Neurology (2025) 25:320 Page 2 of 14

Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the loss of cognitive functions [1]. As the leading cause of dementia, AD poses a significant challenge to both individuals and public health systems [2]. Extracellular β -amyloid (A β) plaque deposition and neurofibrillary tangles (NFT) accumulation are two main pathological hallmarks of AD [3]. Although current treatments, such as acetylcholinesterase inhibitors (AChEIs) and memantine, are used to help AD patients with their symptoms, there remains a significant gap in treatments focused on reversing the course of the disease and its underlying pathology [4]. Adiponectin, a peptide hormone secreted by adipose tissue, exerts regulatory effects on glucose and lipid homeostasis in the body [5]. Adiponectin can be found in cerebrospinal fluid due to its ability to cross the blood-brain barrier [6]. Additionally, AdipoR1 and AdipoR2, two adiponectin receptors, are found in various brain regions, including the hippocampus, cortex, and hypothalamus [7]. These receptors regulate cellular functions via AMPK and PPAR- α signaling [8]. This has been the basis for previous studies investigating the potential role of adiponectin and its pathway in the treatment of AD. Recent research has highlighted the efficacy of AdipoRon (ADN-R Ag) in AD. Zhao et al. [9] reported the ameliorating effect of ADN-R Ag on diabetic mice with AD. ADN-R Ag activated the AMPK/mTOR pathway and restored cognitive deficits in treated mice. In another study, ADN-R Ag increased Aβ clearance by promoting autophagy in AD mice. This autophagy was promoted via the GAPDH/SIRT1 pathway in neuronal cells. Furthermore, ADN-R Ag-treated mice showed improved performance in behavioral tests such as Novel Object Recognition (NOR), Y-maze, and Morris Water Maze (MWM) [10]. ADN-R Ag has also been shown to rescue neural stem cell proliferation in Aß deposited areas of the brain in AD transgenic mice through an AdipoR1/AMPK-mediated mechanism [11]. While earlier research has explored the influence of ADN-R Ag on Alzheimer's disease, a systematic review offers a more thorough perspective on its underlying molecular mechanisms and possible effects on cognitive abilities. In this work, we systematically review the molecular interactions of ADN-R Ag within Alzheimer's pathology and perform a meta-analysis to assess its impact on cognitive outcomes in AD models, thereby evaluating its potential as a therapeutic intervention.

Methods

Data sources and searches

In accordance with the Cochrane Handbook of Systematic Reviews, a systematic search of the published literature was conducted to obtain the articles. Scopus, Cochrane Library, Web of Science, and PubMed (http://

www.ncbi.nlm.nih.gov/pubmed), along with the referen ce list of the obtained articles, were searched until May 2025 according to the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. Medical Subject Headings (MeSH) and keywords such as "Adiponectin receptor agonist"," AdipoRon" and "Alzheimer Disease" were employed to search and filter CAMARADES included articles. All the retrieved articles were transferred to EndNote X9, where duplicates were removed. The initial screening involved reviewing titles and abstracts to discard irrelevant studies. Subsequently, a full-text review was conducted on the remaining articles. Those that were either irrelevant or lacked accessible full texts were also omitted. Supplementary Table 1 contains the full search approach and filters used. The protocol is listed in the PROSPERO registry (http://www.crd.york.ac .uk/PROSPERO) with the registration number PROSPER O 2025: CRD42025589440.

Eligibility criteria and study selection

Two independent researchers selected the eligible articles by screening titles and abstracts. Studies that investigated the effect of ADN-R Ag on animals with induced Alzheimer were included, and Non-Experimental Studies, like observational studies, case reports, or studies lacking experimental intervention, were excluded. The full-text papers were obtained following initial screening and article selection based on inclusion and exclusion criteria. ADN-R Ag's impact on the results of behavioral tests, including Y-maze, NOR, and MWM tests, was included in the selected studies, with review of underlying mechanisms in addition.

Data extraction

First Author (year), species, sex, disease modeling, Treatment group/dose and route and duration, Control group, behavioral tests, biochemical tests were extracted and checked by three authors.

Assessment of methodological quality and risk of bias

To evaluate the risk of bias within the studies, the Collaborative Approach for Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) was employed [12]. Scores on a ten-point scale were used to assess the quality of the selected studies. The assessment was performed by two authors to address any discrepancies. The criteria used to do the assessment included: being published in a peer-reviewed journal; Random allocation; Compliance with animal welfare regulation; Blinded assessment of outcome; Sample-size calculation; Control of temperature; Appropriate animal model; Use of Anesthetic without Significant Neuro-protective Activity; Blinded Induction of Model; Statement of potential conflicts of interest. The scores were

Novinbahador et al. BMC Neurology (2025) 25:320 Page 3 of 14

calculated by allocating a score of 0 or 1 for each criterion. Only studies with a moderate to high quality were included. The studies were classified as low quality (1-4 points), moderate (5-7 points), and high quality (8-10 points).

Statistical analysis

The random-effect model was used to pool the included studies' results. The heterogeneity of included studies was assessed using Cochrane's Q test [13] (with a significant P-value < 0.1) and I-square test (I² greater than 50%, showing significant heterogeneity). Because of the small number of included studies, we are unable to conduct a subgroup analysis. Sensitivity analysis was performed to examine the impact of excluding individual studies on the overall effect size. The small-study effects were investigated using Begg's test and visually inspecting funnel plots. The meta-analysis was conducted using STATA 17.0 software (Stata Corp., College Station, TX), and statistical significance was set at P-value \leq 0.05.

Results

Study selection

After removing duplicates, 89,498 articles were identified. Of these, 26,563 were excluded for not testing the efficacy of ADN-R Ag, 1,249 for testing efficacy on cell models of AD, and 55,768 due to publication type. After screening titles and abstracts, 5,796 articles were removed, and 122 articles were assessed through full-text review. Following this, 92 were excluded due to incomplete data, 8 for using inappropriate animal models, and 17 for combining ADN-R Ag with other interventions. Finally, 6 articles were included in the review, with 4 suitable for meta-analysis (Fig. 1).

Assessment of methodological quality of individual studies

In evaluating the methodological quality of the six studies chosen for the systematic review in animal research, the studies conducted by Ng et al. [14] and Khandelwal et al. [15] were categorized as having "high" methodological quality (Table 1). The other four studies were assessed to have a "medium" methodological quality [10, 11, 16, 17] (Table 1).

Animal models

5xFAD, APP/PS1, and P301S mice are three transgenic models of AD used in the included studies. 5xFAd mice carry five human gene mutations that lead to the over-expression and accumulation of A β and Amyloid Beta Precursor Protein (APP) [18]. APP/PS1 mice are double transgenic and express mutant APP, causing an early onset of AD in models [19]. P301S mice are mutant human tau transgenics and exhibit increased levels of tau

protein accumulation, with accelerated neurodegeneration and dementia [20].

Study characteristics

Table 2 provides an overview of the principal features of the included studies. All six investigations utilized mouse models. The studies were conducted in China and India. In terms of experimental animal gender, all studies used male mice, except for two where gender was not specified. Among the mouse models employed, APP/PS1 was featured in four studies, while 5XFAD and P301S models were each used in the remaining two studies. Details regarding study characteristics, methodological quality, and potential publication bias are presented in Table 2.

Behavioral test analysis

Y-maze

The Y-maze can be used to assess short-term memory in mice. Mice tend to explore novel areas, and when put into a Y-maze, they successively alternate between different arms of the maze; however, each time they visit the recently visited arm with a lesser probability. Therefore, short-term memory function can be evaluated by the alternation rate for the novel arm entry [21]. According to the meta-analysis of three studies (Liu et al. [11], Khandelwal et al. [15], Sun et al. [10]), ADN-R Ag treatment significantly improved Y-maze performance compared to vehicle-treated Tg mice, with an overall effect size of 21.75 (95% CI: 16.61–26.88; *p*<0.001) (Fig. 2A). No significant heterogeneity was observed among the studies (Cochran's Q=0.21, p=0.901; $I^2=0.0\%$) and Begg's test showed no evidence of publication bias (p = 0.602) (Fig. 3A). The sensitivity test showed that the results remained stable when each study was removed (Supplementary Fig. 1A).

Novel object recognition (NOR)

The NOR test is performed to assess the recognition memory of mice. Mice are presented with two identical objects in the first session, and in a second delayed session, one of the objects gets replaced with a novel object. As mice remember the familiar object, they spend more time exploring the novel object in the second session [22]. The pooled analysis from three studies (Ng et al. [14], Liu et al. [11], Sun et al. [10]) indicated a significant positive effect with an overall effect size of 20.46 (95% CI: 11.41–29.51, p < 0.001) (Fig. 2B). There was considerable heterogeneity among the studies (Cochran's Q = 8.26, p = 0.016; $I^2 = 75.8\%$), with no significant publication bias indicated by Begg's test (p = 0.602) (Fig. 3B). The overall effect size did not change significantly when any of the studies were excluded in the sensitivity analysis (Supplementary Fig. 1B).

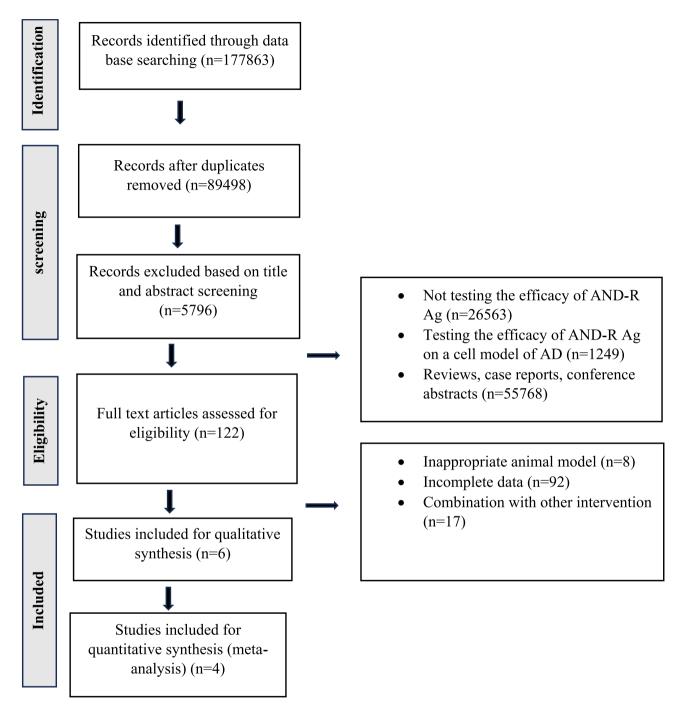


Fig. 1 Identification of studies via databases and registers

MWM and probe test

To evaluate memory and spatial learning in rodents, MWM and probe tests are used in the included studies. These tests show how fast mice learn their way to a submerged hidden platform in a water pool surrounded with visual cues (MWM test), and how much time they spend in the target quadrant if the platform is removed after the learning phase (Probe test) [23]. For the MWM test, Meta-analysis of four studies (Ng et al. [14], Liu et

al. [11], Wang et al. [16], Sun et al. [10]) demonstrated a significant reduction in escape latency time, with an overall effect size of -15.83 (95% CI: -23.33 to -8.32, p < 0.001) (Fig. 2C). Heterogeneity was high among the studies (Cochran's Q = 21.53, p < 0.001; I² = 86.1%), and publication bias was not detected (Begg's test p = 0.497) (Fig. 3C). Sensitivity analysis demonstrated consistent results after the removal of each study (Supplementary Fig. 1C). In the probe test, analysis of two studies (Ng et

Table 1 Methodological quality assessment performed using the CAMARADES tool for animal studies

Author, year	Published in a peer- reviewed journal	Published Random in a peer-allocation reviewed journal	Compliance with animal welfare regulation	Blinded assess- ment of outcome	Sample-size calculation		Statement Control of of potential Temperature conflicts of interest	Appro- priate Animal Model	Appro- Use of Anesthetic without Significant Blinded Total priate Neuroprotective Activity tion of Animal Model Model	Blinded Induc- tion of Model	Total
Chun-Laam Ng et al. 2020	*	*	*	*	*	*	*	*	* (ketamine and xylazine after behavioral tests)	*	10
Liu B et al. 2020 [11]	*	0	*	*	0	*	*	*	0 (chloral hydrate)	0	9
He et al. 2021 [17]	*	*	*	0	0	*	0	*	NA	0	2
Khandelwal M et al. 2022 [15]	*	*	*	*	0	*	*	*	*(ketamine and xylazine after behavioral tests)	*	6
Wang et al. 2023 [16]	*	0	*	0	0	*	*	*	NA	0	2
Sun F et al. 2024 [10]	*	0	*	*	0	*	*	*	* (sodium pentobarbital before behavioral tests)	0	7

al. [14], Khandelwal et al. [15]) demonstrated a significant improvement following treatment, with an overall effect size of 13.89 (95% CI: 8.84–18.94; p<0.001) (Fig. 2D). No significant heterogeneity was detected (Cochran's Q = 0.33, p = 0.568; $I^2 = 0.0\%$).

Molecular mechanisms

In addition to the behavioral features of ADN-R Ag, five articles examining its neuroprotective mechanisms in AD models were included in the systematic review. ADN-R Ag was found to induce its neuroprotective effects in mice through six processes: (1) Mitigation of Aβ depositions and Plaques, (2) Neuronal protection, (3) Autophagy enhancement, (4) improved Insulin sensitivity. (5) Enhanced Mitochondrial dynamics (6) AMPK pathway.

Adiponectin receptors

Adiponectin receptors, notably AdipoR1 and AdipoR2, belong to the family of G-protein coupled receptors (GPCRs) and are responsible for mediating the actions of adiponectin, a hormone predominantly produced by adipose tissue. These receptors are also distributed across several brain regions, such as the hippocampus, cortex, and hypothalamus, suggesting their involvement in cognitive processes and the regulation of energy balance. The roles of AdipoR1 and AdipoR2 have attracted significant attention in relation to Alzheimer's disease (AD), owing to their participation in metabolic regulation, modulation of inflammation, and neuroprotective mechanisms. Adiponectin itself has demonstrated neuroprotective properties, which may contribute to reduced neuronal injury and enhanced cell survival in neurodegenerative conditions. Experimental models have shown that upregulation of adiponectin receptor signaling can alleviate cognitive impairments and diminish hallmark pathological features of Alzheimer's disease. Furthermore, studies indicate that adiponectin and its receptors may facilitate the removal of amyloid-beta (AB) plagues, a defining feature of AD pathology. There is also supporting evidence that adiponectin signaling can modulate tau phosphorylation [24].

Mitigation of AB depositions and plaques

ADN-R Ag was reported to mitigate AB depositions and Plaques in the included studies. Chun-Laam Ng. et al. [14] reported the reduction of Aβ loading and number of deposits in the cerebral cortex and hippocampus of 5xFAD mice. ADN-R Ag also decreased soluble and oligometric forms of A β in the hippocampus of the mice and soluble $A\beta$ in the cortex, though the reduction of oligomeric Aβ in the cortex was not significant. ADN-R Ag was reported to decrease AB burden by decreasing its production and processing through inhibition of GSK3β/BACE1/NF-κB pathway, rather than by activating

Table 2	- 1	Characteristics of the included studies	les				-
First Author (year)	Controls (<i>n</i>)	Cases (n)	Age & sex	Ireatment dose, route and duration	Behav- ioral tests	Behavioral test results	Biochemical test results
Chun-	n=7 (5XFAD + ve-	n=7	5.5-month-old	ADN-R Ag	MWM,	anxiety levels	↓ IRS-1,
Laam	hicle for NOR test)	(5xFAD + ADN-R		(50 mg/kg),	NOR,	† the spatial	†pAkt and
Ng et		Ag for NOR)		oral gavage, 3	Fear-	learning and	↑ pGSK3βS9
al. 2020	cognitive tests)	14		months	condi-	memory func-	†insulin sensitivity
[4]		(5xFAD+ADN-R			tioning	tions MWM,	↓hippocampal CA1 axonal swelling
		Ag for other			test	NOR task and	↓Aβ-associated dystrophic neurites
		cognitive tests)				hippocampus-	†hippocampal CA1 stained neurons
						dependent	↑layer V neurons
						learning and	†dendritic spine of the hippocampal CA1 pyramidal neurons
						memory func-	†Spinophilin (but not synaptophysin)
						tions (CFC tests)	↓Aβ loading
						Did not	Unumber of deposits in both hippocampus and cerebral cortex
						improve	↓soluble Aβ and
						performance in	↓oligomeric Aβ in hippocampus
						the cued fear-	↓oligomeric Aβ not significantly in cortex
						conditioning	↓BACE1, sAPPβ, and βCTF levels
						task	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
							the amyloidogenic pathway
							↓activation of microglia and astrocytes (Iba1 and GFAP staining)
							\downarrow neuroinflammation and IL1 β and TNF α levels
							↓microglia around Aβ plaque
							\uparrow microglia phagocyte activity (lba1 and A β containing)
							no significant difference in the number of astrocytes surrounding a plaque
Liu B et		n=9 (APP/	male-7-month-old	ADN-R Ag	NOR, Y	†cognitive	↓Aβ deposition
al. 2020	PSI+vehicle)	PS1+AND-R Ag)		(1 µg in 2 µl	maze,	function, NOR,	↓BACE1
[]				vehicle),	MWM	YM and MWM	fneural stem cell proliferation
				Intracerebro-		test but it did	↑ total dendritic length and dendritic complexity↓
				ventricular		not improve	↓Aβ-induced injury via AMPK pathway
				injection, 7		locomotor	↑mitochondrial function (△Ψm) via AMPK pathway
				days		activity	↑NSCs'proliferation against Aβ through AdipoR1 (but not AdipoR2)
							↑NSCs proliferation against Aβ via AMPK/CREB pathway
He et	n=4	n=4 (APP/	6-month-old	AND-R Ag	NA	ΥN	↓toxic Aβ1–42 accumulation
al. 2021		PS1+AND-R Ag)		(50 mg/kg),			fautophagy-related gene (ATGs): Beclin-1, ATG5, ATG7, and LC3-II
[17]				oral gavage, 2			†AMPK-mTOR pathway
				months			↓autophagy inhibitors, including 3-MA and CQ
							↓pro-inflammatory cytokines (TNF-α, IL-1β, IL-10, IL-6)
							†AdipoR1 and APPL1 expression
							Uneuroinflammatory state and GFAP and IBA-1 levels

চ
ē
z
₻
5
ق
N
'n.
충
<u>#</u>
Н.

First Author	Controls (n)	Cases (n)	Age & sex	Treatment dose, route	Behav- ioral	Behavioral test results	Biochemical test results
(Year) Khan- delwal M et al. 2022 [15]	n=14 (APP/ PSI + vehicle)	n=14 (APP/ PS1+ADN-R Ag)	male	and duration ADN-R Ag (50 mg/kg), oral gavage, 30 days	NOR, Y-maze, MWM	fbehavioral performance in Y maze test fperformance in probe test and retained memory t thigmotaxic behavior but did not affect swimming speed flearning in reaching the platform during learning trails	finsulin sensitivity in GTT and ITT tests did not affect body weight and food intake JRPA (soluble) and guanidine (insoluble) Aβ42 levels JRPA (soluble) and guanidine (insoluble) Aβ42 levels JPIaque burden, Aβ42 plaque area, and number occupied by Aβ plaque Jreactive astrocytes (reduction of GFAP) Trinsulin signaling, phosphorylation of AKT Thhosphorylation of AMPK (Thr 172) and its downstream targets ACCa and ACCβ did not change IRβ and insulin levels Jastrocytosis (GFAP) and microgliosis (Iba-1) and phosphorylation of JNK TGLUT 4 (insulin sensitive), GLUT 1 (insulin independent), but not GLUT 3 did not affect expression of insulin receptor (INSR) and adiponectin receptors (AdipoR1 and AdipoR2) J Taut phosphorylation J MRNA expression of the transcription factor J Towloved in Aβ42 formation) and APP J Taut phosphorylation J Taut phosphorylat
Wang et al. 2023 [16]	<i>n</i> = 11 (P3015 + vehicle)	n = 11 (P3015 + AND-R Ag)	male-6-month-old	ADN-R Ag (50 mg/kg), oral gavage, 4 months	NOR,	fMWM test, learning deficit, finding hid- den latency, spatial memory, escape latency, and long-term memory defi- cits in NOR	† (PSD95, SYP, dendritic spines density and synapse loss fmitochondrial fusion relative proteins (Mfn2, OPA1) Did not affect fission protein (DRP1) †mitochondrial function by AMPK/SIRT3 pathway ↓tau phosphorylation and levels of p-Tau and p-Tau †hippocampal protein level of p-GSK3ß Did not affect PP2Ac (Y307 site) and CDK5
Sun F et al. 2024 [10]	n = 5-9(APP/ PSI + vehicle)	n = 5 to 9 (APP/ PS1 + AND-R Ag)	male-8-month-old	ADN-R Ag (1 µg per mouse), Intracerebro- ventricular injection, 7 days	NOR, Y maze, MWM	1cognitive dysfunction through the activation of autophagy 1NOR, Y-Maze and MWM 1cognitive dysfunction by the AMPK/SIRT1 pathway	f-Autophagy, the number of autophagic puncta in neurons, autophagosomes f LC3II 1 Lp62 1 Lautophagic flux 1 Autophagic flux 1 Autophagosomes through the AMPK pathway 1 The nuclear intensity of GAPDH 1 Tinteraction of SIRT1 with GAPDH 2 AB plaques by SIRT, EX527 2 AB deposition 1 The nuclear intrough the AMPK/SIRT1 pathway

Novinbahador et al. BMC Neurology (2025) 25:320 Page 8 of 14

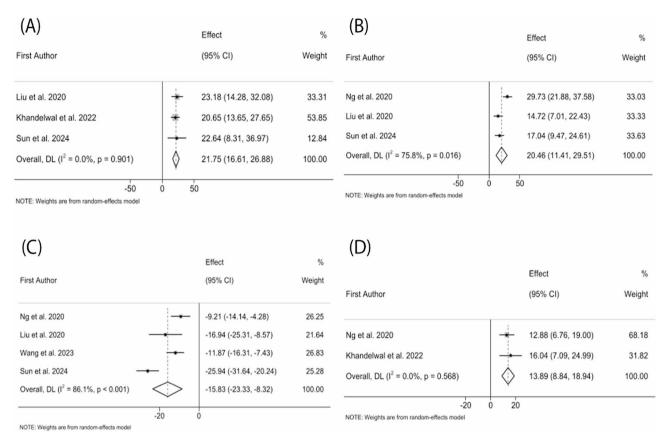


Fig. 2 Forest plot demonstrating the effect sizes of Adiponectin Receptor agonist (AND-R Ag) on Alzheimer's disease (AD) model mice in Y-maze **A**, Novel Object recognition (NOR) **B**, Morris Water Maze (MWM) **C**, and Probe test **D**. Cl: Confidence interval

Aβ-degrading enzymes. Liu, et al. [11] reported a reduction of Aβ deposition in the cortex and hippocampus of APP/PS1 Tg mice after ADN-R Ag treatment. Additionally, ADN-R Ag was reported to decrease AB load through inhibition of amyloidogenic pathways and lowering amyloidogenic βsecretase (BACE1) levels. According to He et al.'s [17] study, AND-R Ag lowered Aβ plaque deposition in the cortex and hippocampus of APP/PS1 mice, as well as Aβ accumulation in vitro. However, the treatment did not alter the levels of proteins involved in amyloidogenesis, such as BACE1. In Khandelwal Ng et al.'s [14] study, ADN-R Ag reduced both soluble and insoluble Aβ42 levels, as well as Aβ42 plaque burden. Furthermore, SP1, a transcription factor for the BACE 1 gene, was decreased after ADN-R Ag treatment; however, the mRNA levels of the BACE 1 gene remained unchanged, suggesting a role for BACE 1 mRNA translation in reducing Aβ burden. ADN-R Ag also increased expression of APOE, LDLR, and neprilysin in brain tissue of model mice, as these proteins enhance clearance and efflux of Aβ. Sun et al. [10] reported that ADN-R Ag treatment increased the clearance of Aβ via autophagic pathways. Khandelwal et al. [15] and Wang et al. [16] demonstrated that ADN-R Ag decreases Tau hyperphosphorylation, a hallmark of Alzheimer's disease pathology.

Additionally, ADN-R Ag inhibited the phosphorylation of JNK, which is involved in Tau phosphorylation [15].

Neuronal protection

The neuronal effects of ADN-R Ag were reported in the included studies. Chun-Laam Ng et al. [14] reported that ADN-R Ag reduced axonal swelling, rescued hippocampal CA1 neuron loss, and increased layer V neurons related to memory function in 5xFAD mice. ADN-R Ag was also able to enhance synaptic function by restoring spine deficits in hippocampal CA1 apical dendrites. In Addition, ADN-R Ag mitigated AD induced neuroinflammation by suppressing microglial and astrocytes activity and decreasing inflammatory factors such as IL1 β and TNF α in 5xFAD mice brains. However, the activity of microglia was increased around A\beta plaques and number of astrocytes remained unchanged. In He et al.'s [17] study, AND-R Ag showed anti-neuroinflammatory effects by reducing both microglial activity and inflammatory markers, including TNF-α, IL-1β, IL-10, and IL-6. According to Liu et al.'s [11] study, the proliferation of neural stem cells was stimulated in the hippocampus of APP/PS1 TG mice after ADN-R Ag treatment. Furthermore, in their in vitro study, ADN-R Ag enhanced the total dendritic length and complexity of primary

Novinbahador et al. BMC Neurology (2025) 25:320 Page 9 of 14

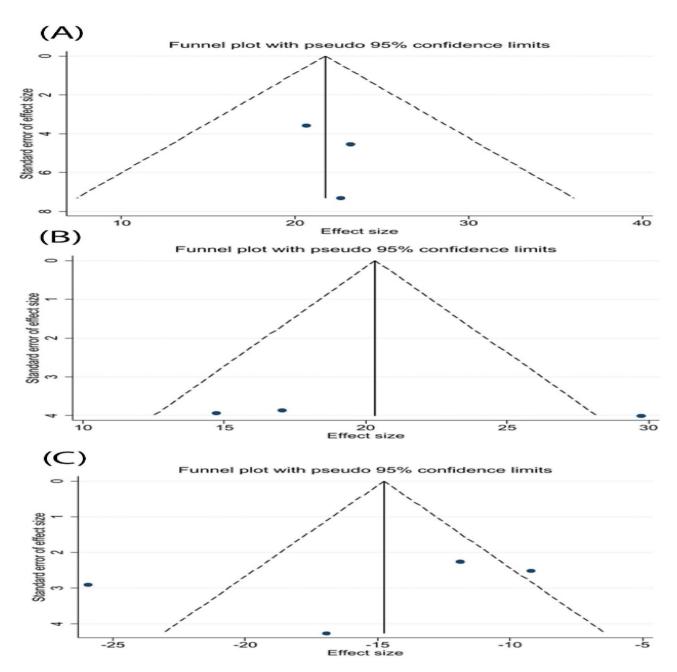


Fig. 3 Funnel plot of meta-analyzed studies in Y-maze A, Novel Object recognition (NOR) B, Morris Water Maze (MWM) C tests

neurons and also protected them from the cytotoxic effects of A β incubation via AdipoR1 receptors. ADN-R Ag also boosted the proliferation of neural stem cells in vitro, and reversed the adverse effects of A β incubation (Adipor1 and AMPK). Khandelwal et al. [15] demonstrated ADN-R Ag's anti-neuroinflammatory effects in AD model mice, marked by reduced activation of microglia and astrocytes. ADN-R Ag also enhanced synaptic function in TG mice, indicated by increased synaptic markers PSD-95 and synaptophysin. Wang et al. [16] reported that ADN-R Ag rescued synaptic function in P301S mice. ADN-R Ag treatment increased PSD-95 and

synaptophysin and restored the density of the dendritic spine in mice. Furthermore, in Sun et al.'s [10] study, ADN-R Ag stimulated neurogenesis in the hippocampus of APP/PS1 Tg mice.

Autophagy enhancement

According to Chun-Laam Ng et al.'s [14] study, ADN-R Ag promoted the phagocytic activity of microglia around A β plaques, which was confirmed in vitro. He et al. [17] reported that AND-R Ag treatment stimulated autophagic activity in neuronal cells, as indicated by increased expression of autophagy-related genes (ATGs) and

decreased levels of autophagy inhibitors, including 3-MA and CQ. Sun et al. [10] conducted a more in-depth investigation of ADN-R Ag's neuroprotective role through phagocytic pathways. They demonstrated ADN-R Ag's neuroprotective role through phagocytic pathways in APP/PS1 Tg mice. ADN-R Ag treatment increased autophagic activity in neurons of the hippocampus and cortex of the model mice, but the increased autophagy was not evident in astrocytes or microglia. ADN-R Ag did not enhance autophagic activity in wild-type mice. It was also demonstrated that ADN-R Ag's neuroprotective and neurogenic effects were diminished upon suppression of autophagy, emphasizing an autophagy-dependent mechanism for ADN-R Ag's effectiveness. Additionally, ADN-R Ag was reported to exert its effects via the AMPK/SIRT1 pathway through AdipoR1 receptors.

Improved insulin sensitivity

ADN-R Ag has been studied for its ability to enhance insulin sensitivity, a potential factor in ameliorating AD symptoms. Chun-Laam Ng et al. [14] reported reduced insulin sensitivity in 5xFAD mice compared to WT mice; however, ADN-R Ag treatment restored insulin sensitivity, indicated by increased pAkt and pGSK levels. According to Khandelwal et al.'s [15] study, ADN-R Ag improved insulin sensitivity in APP/PS1 mice during the glucose tolerance test (GTT) and insulin tolerance test (ITT). ADN-R Ag was reported to increase pAkt and pGSK3β levels, but no change in IR β was indicated. Furthermore, expression of metabolism-regulated genes, including ACCA, ACCB, PGC1α, and PPARα, was increased upon ADN-R Ag treatment in the brain of the APP/PS1 mice, unlike the expression of insulin receptor (INSR) and adiponectin receptors AdipoR1 and AdipoR2. In vitro, ADN-R Ag restored glucose uptake in neuronal cells by facilitating the translocation of the glucose receptor GLUT4 to the cell membrane.

Enhanced mitochondrial dynamics

In AD, mitochondrial function is also altered. As reported by Lie et al. [11], in primary neurons with A β -induced impairment, ADN-R Ag enhanced mitochondrial function via the AMPK route. Furthermore, Wang et al. [16] demonstrated that ADN-R Ag restored mitochondrial activity by ameliorating AD-induced fusion disruption in P301S mice, again through the AMPK pathway.

AMPK pathway

As reported in the included studies, AMPK phosphorylation, a downstream component in ADN-R Ag's cascade, plays a key role in mediating ADN-R Ag's effects in mitigating AD pathology. The involvement of the AMPK pathway has been demonstrated in several processes. ADN-R Ag-induced AMPK activation has been reported as necessary for NSC proliferation (via AMPK/CREB activation), increased insulin sensitivity (via activation of AKT [Ser473] and inhibition of GSK3 β [Ser9]), enhanced mitochondrial fusion (via AMPK/SIRT3 pathway activation), inhibition of tau hyperphosphorylation (via AMPK/GSK3 β pathway), promotion of autophagy (via GAPDH and SIRT1 colocalization), improvements in neurogenesis and cognitive performance (both via the AMPK/SIRT1 pathway), and mitigating A β deposition [10, 11, 14–16].

Discussion

While conventional treatments minimize AD symptoms, they fail to affect disease progression or deliver sustained therapeutic outcomes. Following a systematic review of the published literature, we performed a meta-analysis to determine whether ADN-R Ag could be used as a potential therapeutic agent for AD. According to the meta-analysis, ADN-R Ag significantly improved cognitive function in behavioral tests in AD model mice. Furthermore, the included articles revealed that ADN-R Ag's therapeutic effect occurred through multiple processes and was not limited to a single pathway. The results of this study may provide insights that contribute to further research and human clinical trials.

AD is a major cause of dementia and impairs cognitive and neuronal functions in affected individuals. Therefore, cognitive behavioral tests such as the Y-maze and NOR are employed to assess ADN-R Ag's effects on cognitive and memory function in AD model rodents. Moreover, processes such as Aβ deposition, insulin sensitivity, neuronal impairments, and mitochondrial dysfunction are studied and reviewed to provide a broader understanding of the underlying mechanisms involved in ADN-R Ag treatment. Based on the meta-analysis, ADN-R Ag significantly improved cognitive functions in model mice across all tests, with considerable effect sizes in the Y-maze, NOR, MWM, and probe tests, indicating enhancements in short-term and recognition memory, as well as spatial learning. The heterogeneity was evident in the results, particularly for the NOR and MWM tests; however, the overall robust positive effect of ADN-R Ag on cognitive functions adds to its value as a therapeutic agent for AD. The heterogeneity among the studies was evident in the results, particularly for the NOR and MWM tests, which may be because of differences in treatment dose and duration of the included experiments. In addition, various animal models evaluated in the studies could impact the obtained results. Further research is required to conduct subgroup analyses to assess their effects on the findings.

As reported, ADN-R Ag was involved in multiple processes and pathways along its course of effect. It was demonstrated to mitigate the pathological hallmark of

Novinbahador et al. BMC Neurology (2025) 25:320 Page 11 of 14

AD, Aβ depositions and plaques, as well as seemingly less direct but related pathways such as mitochondrial dysfunction and insulin sensitivity. Regarding the formation of AB depositions, included studies reported contrasting findings: Liu et al. [11] reported that AND-R Ag lowered BACE1 levels in the cortex and hippocampus of APP/PS1 mice, but He et al. [17] found no such effect in the same brain regions and mouse model. Both studies used the same model; however, differences in animal age, drug delivery method (intracerebroventricular vs. oral), and group size may explain their conflicting results. Using more standardized experimental designs could help resolve such inconsistencies. Furthermore, considering the presence of adiponectin receptors in various tissues, the effects of ADN-R Ag may not be limited to the brain, as suggested by previous studies. Dhandapany et al. [25] reported the role of AdipoR1 in hypertrophic cardiomyopathy in mice. Furthermore, a study by Staiger et al. [26] indicated that AdipoR1 expression in skeletal muscle cells was related to glucose and lipid metabolism. Not being limited to a single pathway or tissue burdens the suggestion of ADN-R Ag as an overly promising drug for AD without further studies. However, considering the multifactorial nature of AD and its wide-ranging effects on overall health, such complexity may support the potential of ADN-R Ag as a valuable therapeutic candidate. The reviewed studies indicated a decreased number and activity of astrocytes and microglia, serving as markers of the anti-inflammatory effect of ADN-R Ag. As reported by Chun-Laam Ng et al. [14], in addition to reducing axonal swelling and restoring neuronal loss, ADN-R Ag reduced the number and activity of astrocytes and microglia. However, in contrast to this overall reduction, microglial activity increased around Aß plaques following ADN-R Ag treatment. This paradox suggests that ADN-R Ag may exert its effects both by suppressing the global neuroinflammatory state in AD and by promoting Aß clearance through localized glial activity. Nevertheless, with regard to the underlying mechanism, Sun et al. [10] reported that ADN-R Ag did not influence glial cell phagocytosis, implying that its effects on glial activation may involve alternative, phagocytosis-independent pathways. Consistent with these findings, APN knockout was found to suppress lysosomal activity in glial cells; however, it had no effect on glial phagocytosis [17].

By comparing the responses of mouse models to ADN-R Ag, Sun et al. [10] found that ADN-R Ag did not show protective effects in restoring neuronal numbers, autophagic puncta, autophagosomes, or autophagic flux in wild-type (WT) mice. This suggests that the function of ADN-R Ag may be dependent on the specific cellular or pathological environment. Alterations in the expression of adiponectin receptors, AdipoR1 and AdipoR2, may help explain this variability. Kim et al. [27] reported

that the expression of AdipoR1, the primary mediator of ADN-R Ag's signaling cascade, is significantly altered in Alzheimer's disease (AD) model mice. Additionally, Pratap et al. [28] reported a marked upregulation of AdipoR2 expression in astrocytes within the 5XFAD mouse model of AD. While these changes in adiponectin receptor expression and interaction may help explain ADN-R Ag's varied efficacy across mouse strains, further research is needed to support more robust assumptions. The results of the present review indicate that the AMPK pathway is essential for multiple neuroprotective effects of ADN-R Ag. AMPK is a kinase enzyme that functions as a key regulator of cellular energy homeostasis. Elevated AMP/ATP ratios indicate a low-energy status and activate AMPK. AMPK activation modulates its downstream pathway toward an energy-saving, catabolic state and enhances processes such as glycolysis. This AMPKinduced catabolic state may increase the cell's ability to survive under stress conditions, such as oxidative stress [29]. Previous studies have reported molecular pathways involved in AMPK's neuroprotective role. AMPK can directly phosphorylate and activate AKT, while it phosphorylates and inhibits GSK3ß (both key regulatory kinases), leading to increased insulin sensitivity in neurons [30, 31]. Furthermore, GSK3β is known to promote Tau phosphorylation, increasing the formation of neurofibrillary tangles in the brain in AD. AMPK is believed to mitigate this process by phosphorylating and inhibiting GSK3β [32].

CREB is another downstream component of the AMPK pathway and functions as a transcription factor. CREB is reported to be directly phosphorylated and activated by AMPK and it exerts its effects in AD by regulating the expression of various neuroprotective factors and enhancing NSC proliferation [33]. Furthermore, AMPK is reported to be neuroprotective via the SIRT1 pathway. SIRT1 is a protein involved in regulating cellular stress resistance, metabolism, autophagy, neurogenesis, and cognitive performance. However, its activity is indirectly modulated by AMPK via markers such as NAD* (nicotinamide adenine dinucleotide), rather than through direct phosphorylation [34]. It is important to note that AMPK-related processes, similar to most cellular pathways, can be context-dependent and may have bidirectional roles. For instance, although AKT is generally considered to be a downstream of AMPK, it can also exert regulatory effects on AMPK activity through feedback loops [35]. Moreover, the AMPK pathway is a broadly involved signaling cascade that is not specific to ADN-R Ag. According to Li et al.'s [36] study, Graphene oxide decreased AB deposition and improved AD in mice through the AMPK pathway. In another study, the AMPK pathway was found to be involved in the neuroprotective and neurogenesis effects of TBG096, a lead compound, in

Novinbahador et al. BMC Neurology (2025) 25:320 Page 12 of 14

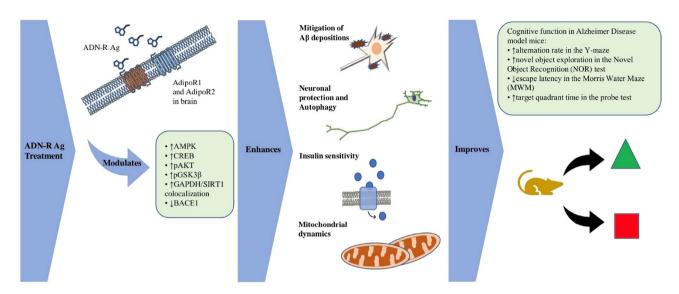


Fig. 4 Schematic representation of the Adiponectin Receptor Agonist (AND-R Ag), adiponectin receptors (AdipoR1 and AdipoR2), their associated molecular mechanisms, and the effects of receptor agonists in the context of Alzheimer's disease model mice and their cognitive function

AD model mice [37]. Huang et al. [38] demonstrated the role of the AMPK pathway in mitigating hypoxia-induced injuries in neuronal cells. Kornelius et al. [39] report that AMPK activation by mevastatin, a reductase inhibitor used to treat dyslipidemia, enhances insulin resistance and mediates neuroprotection against A β -induced toxicity. Furthermore, AMPK activation has been reported to restore mitochondrial dynamics in hepatocytes following drug-induced injury, emphasizing the complex nature of ADN-R Ag's downstream components [40].

Limitations

This study has some limitations. First, the mouse models of AD were not consistent across studies included in the meta-analysis, which might have introduced additional heterogeneity to the results. Second, diverse outcome measures and molecular pathways were employed to assess the efficacy of ADN-R Ag, limiting the feasibility of performing a meta-analysis. Third, a limited number of articles with small sample sizes were included in the current study, which could reduce the reliability of the findings.

Conclusion

The present study demonstrated that ADN-R Ag significantly enhanced cognitive functions in AD model mice. The findings also revealed multiple pathways involved in ADN-R Ag's neuroprotective effects, highlighting its potential as a therapeutic agent for AD (Fig. 4). However, some limitations and gaps remain in the literature. As reported, the downstream effects of ADN-R Ag are diverse and cannot be measured by single-metric approaches. Additionally, contrasting findings, particularly in the A β formation processes, neuroinflammation,

and phagocytosis, suggest a need for more focused research. Future studies and clinical trials may help address these issues and further investigate the therapeutic potential of ADN-R Ag in AD.

Supplementary Information

The online version contains supplementary material available at https://doi.or q/10.1186/s12883-025-04356-5.

Supplementary Material 1. Supplementary Figure 1. The overall effect size did not change significantly when any of the studies were excluded in the sensitivity analysis (A, B, C).

Supplementary Material 2. Supplementary Table 1. Search strategy table.

Acknowledgements

The authors would like to appreciate the support provided by the Clinical Research Development Unit, Imam Reza General Hospital, Tabriz, Iran, in conducting this investigation. The authors would appreciate the support for conducting this investigation by the Clinical Research Development Unit,

Authors' contributions

HS and TN conceived and designed the study. TN, AP and AA selected the articles and extracted and cross-checked the data. RM, TN, AA, and LA contributed to the statistical analysis. AA, AP and TN wrote the first draft of the manuscript. HS revised and discussed the final edition. All authors read and approved the final manuscript.

Funding

Not applicable.

Data availability

Data is provided within the manuscript.

Imam Reza General Hospital, Tabriz, Iran.

Declarations

Ethics approval and consent to participate

The study was approved by the Tabriz University of Medical Sciences Institutional Ethics Committee under the code IR.TBZMED.REC.1403.955.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

- ¹Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- ²Emergency and trauma care research center, Tabriz University of Medical Sciences, Tabriz, Iran
- ³Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- ⁴Faculty of Science, York University, Toronto, Ontario, Canada
- ⁵Medical Philosophy and History Research Center, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

Received: 8 June 2025 / Accepted: 22 July 2025 Published online: 04 August 2025

References

- Tenchov R, Sasso JM, Zhou QA. Alzheimer's disease: exploring the landscape of cognitive decline. ACS Chem Neurosci. 2024;15(21):3800–27.
- 2. Alzheimer's disease facts and figures. Alzheimers Dement. 2024;20(5):3708–821.
- 3. Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.
- Huisa BN, Thomas RG, Jin S, Oltersdorf T, Taylor C, Feldman HH. Memantine and acetylcholinesterase inhibitor use in Alzheimer's disease clinical trials: potential for confounding by indication. J Alzheimers Dis. 2019;67(2):707–13.
- Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, et al. The
 effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease
 (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother. 2020;131: 110785.
- Neumeier M, Weigert J, Buettner R, Wanninger J, Schäffler A, Müller AM, et al. Detection of adiponectin in cerebrospinal fluid in humans. Am J Physiol Endocrinol Metab. 2007;293(4):E965–9.
- Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, et al. Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol. 2009;200(1):93–105.
- Chen H, Zhang L, Li X, Li X, Sun G, Yuan X, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes. J Steroid Biochem Mol Biol. 2013;138:445–54.
- Zhao W, Zhang W, Hu Y, Zhou Y, Zhao J, Li Y, et al. AdipoRon ameliorates synaptic dysfunction and inhibits Tau hyperphosphorylation through the AdipoR/AMPK/mTOR pathway in T2DM mice. Neurochem Res. 2024;49(8):2075–86.
- Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, et al. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDHinduced Sirtuin 1 activation in alzheimer's disease. Br J Pharmacol. 2024;181(17):3039–63.
- Liu B, Liu J, Wang JG, Liu CL, Yan HJ. Adiporon improves cognitive dysfunction of Alzheimer's disease and rescues impaired neural stem cell proliferation through AdipoR1/AMPK pathway. Exp Neurol. 2020;327: 113249.
- Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res. 2020;7:1–11.
- Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
- Ng RC, Jian M, Ma OK, Bunting M, Kwan JS, Zhou GJ, et al. Chronic oral administration of adiporon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer's disease mouse model. Mol Psychiatry. 2021;26(10):5669–89.
- Khandelwal M, Manglani K, Upadhyay P, Azad M, Gupta S. AdipoRon induces AMPK activation and ameliorates alzheimer's like pathologies and associated cognitive impairment in APP/PS1 mice. Neurobiol Dis. 2022;174: 105876.

- Wang C, Chang Y, Zhu J, Wu Y, Jiang X, Zheng S, et al. AdipoRon mitigates Tau pathology and restores mitochondrial dynamics via AMPK-related pathway in a mouse model of alzheimer's disease. Exp Neurol. 2023;363: 114355.
- He K, Nie L, Ali T, Wang S, Chen X, Liu Z, et al. Adiponectin alleviated Alzheimer-like pathologies via autophagy-lysosomal activation. Aging Cell. 2021;20(12): e13514.
- Forner S, Kawauchi S, Balderrama-Gutierrez G, Kramár EA, Matheos DP, Phan J, et al. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Sci Data. 2021;8(1):270.
- Lok K, Zhao H, Shen H, Wang Z, Gao X, Zhao W, et al. Characterization of the APP/PS1 mouse model of Alzheimer's disease in senescence accelerated background. Neurosci Lett. 2013;557 Pt B:84–9.
- 20. Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, et al. P301S mutant human Tau transgenic mice manifest early symptoms of human Tauopathies with dementia and altered sensorimotor gating. PLoS One. 2011;6(6): e21050.
- Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol. 2019;1916:105–11.
- 22. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110.
- 23. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58.
- Várhelyi ZP, Kálmán J, Oláh Z, Ivitz EV, Fodor EK, Sántha M, et al. Adiponectin receptors are less sensitive to stress in a transgenic mouse model of Alzheimer's disease. Front Neurosci. 2017;11: 199.
- Dhandapany PS, Kang S, Kashyap DK, Rajagopal R, Sundaresan NR, Singh R, et al. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. Sci Adv. 2021. https://doi.org/10.1126/ sciadv.abb3991.
- Staiger H, Kaltenbach S, Staiger K, Stefan N, Fritsche A, Guirguis A, et al. Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism. Diabetes. 2004;53(9):2195–201.
- Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH, Kim MO. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer's diseaselike pathologies. Sci Rep. 2017;7(1): 12435.
- Pratap AA, Holsinger RMD. Altered brain adiponectin receptor expression in the 5XFAD mouse model of Alzheimer's disease. Pharmaceuticals (Basel). 2020. https://doi.org/10.3390/ph13070150.
- Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and time. Mol Cell. 2021;81(18):3677–90.
- 30. Han F, Li C-F, Cai Z, Zhang X, Jin G, Zhang W-N, et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun. 2018;9(1):4728.
- 31. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD, et al. Inhibition of AMPK catabolic action by GSK3. Mol Cell. 2013;50(3):407–19.
- Assefa BT, Tafere GG, Wondafrash DZ, Gidey MT. The bewildering effect of AMPK activators in alzheimer's disease: review of the current evidence. Biomed Res Int. 2020;2020:9895121.
- Huang W, Cao J, Liu X, Meng F, Li M, Chen B, et al. AMPK plays a dual role in regulation of CREB/BDNF pathway in mouse primary hippocampal cells. J Mol Neurosci. 2015;56(4):782–8.
- 34. Liu L, Liu C, Fang L. AMPK-SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane. Mol Med Rep. 2021;23(1):56.
- 35. Chedere A, Hari K, Kumar S, Rangarajan A, Jolly MK. Multi-Stability and Consequent Phenotypic Plasticity in AMPK-Akt Double Negative Feedback Loop in Cancer Cells. J Clin Med. 2021;10(3):472.
- Li X, Li K, Chu F, Huang J, Yang Z. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem Biol Interact. 2020;325: 109126.
- Chen D, Fasina OB, Lin J, Zeng J, Manzoor M, Ohno H, et al. TBG096 ameliorates memory deficiency in AD mouse model via promoting neurogenesis and regulation of Hsc70/HK2/PKM2/LAMP2A signaling pathway. Int J Mol Sci. 2025. https://doi.org/10.3390/ijms26062804.
- Huang Q, Lou T, Wang M, Xue L, Lu J, Zhang H, et al. Compound K inhibits autophagy-mediated apoptosis induced by oxygen and glucose deprivation/reperfusion via regulating AMPK-mTOR pathway in neurons. Life Sci. 2020;254: 117793.
- Kornelius E, Li HH, Peng CH, Hsiao HW, Yang YS, Huang CN, et al. Mevastatin promotes neuronal survival against Aβ-induced neurotoxicity through AMPK activation. Metab Brain Dis. 2017;32(6):1999–2007.

 Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, et al. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS One. 2016;11(10): e0165638.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.