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ABSTRACT 

Background: This study aimed to evaluate the effectiveness of machine learning 

(ML) models in predicting difficult intubation among maxillofacial surgery patients 

by using clinical data from a previous study involving 132 patients. The study sought 

to enhance anesthesiologists' ability to identify patients at risk of difficult intubation, 

a critical concern in surgical settings. 

Methods: The research applied various ML algorithms, including decision trees 

(DT), random forests (RF), Naive Bayes (NB), neural networks (NN), support vector 

machines (SVM), K-nearest neighbors (KNN), and ensemble voting methods, to the 

existing clinical dataset. This dataset contained a range of factors potentially 

associated with DI, such as the Mallampati score, Upper Lip Bite Test (ULBT) 

results, facial angle, and other relevant variables. A comprehensive approach was 

taken to explore the impact of different data preprocessing techniques, with a 

particular focus on feature selection and normalization methods. 

Results: The study found that the combination of mutual information-based feature 

selection and robust scaler normalization consistently yielded high predictive 

accuracy. Notably, the decision tree algorithm achieved an accuracy of 0.84 and 

precision, sensitivity, and specificity scores of 0.95. The analysis also highlighted the 

strength of ensemble learning, which, by combining multiple classifiers, achieved an 

accuracy of 0.82. The results suggest that ML models, especially random forests and 

ensemble voting methods, can be highly accurate in predicting difficult intubation 

when trained on existing clinical data. 

Conclusion: The research underscores the importance of data preprocessing in 

enhancing algorithmic performance, particularly the effectiveness of mutual 

information-based feature selection combined with robust scaler normalization. 

However, the study also indicates the need for further research to refine these models, 

ensuring their applicability and reliability in real-world clinical settings. 

 

R
e

s
e

a
rc

h
 A

rt
ic

le
 

TOSHIBA
Underline

TOSHIBA
Highlight

TOSHIBA
Highlight

TOSHIBA
Highlight



2 Naderian et al.: Artificial Intelligence and Difficult Intubation 

Introduction 

nesthesiologists recognize the critical 

importance of managing difficult airways in 

clinical practice [1]. According to the American 

Society of Anesthesiologists (ASA) Task Force, 

difficulties with mask ventilation, laryngoscopy, or 

tracheal intubation signify challenging airway 

management, each with its specific criteria for difficulty 

[2]. The ASA defines difficult tracheal intubation as a 

situation that takes longer than 10 minutes or more than 

three tries to place the tracheal tube correctly [3]. 

Proactive measures, including preoperative airway 

exams, are essential in identifying patients with 

problematic airways [4]. Despite their ability to forecast 

many cases [5], these measurements may not always 

predict difficulties, underscoring the need for continued 

evaluation [6]. Difficult tracheal intubations can lead to 

significant morbidity and mortality cases rate, ranging 

from 1.5 to 13%. [7]. To address these challenges, several 

airway devices and techniques, including fiberoptic 

devices and laryngeal mask airways, have been 

developed [8]. The Cormack and Lehane classification 

method, which ranges from Class I (clear view) to Class 

IV (limited view), helps categorize difficulties 

encountered during laryngoscopy [9].  

The classification system helps classify the challenges 

encountered during laryngoscopy. Despite these 

advancements, no universal test has proven effective in 

predicting all cases of difficult intubation (DI) [9]. 

Commonly used assessment techniques include the 

Lemon method, Upper Lip Bite Test (ULBT), Modified 

Mallampati Score (MMS), neck movement, body mass 

index (BMI), hyomental distance, thyromental distance 

(TMD), palm print, head extension, and jaw protrusion 

[7, 10]. Multiple tests are generally preferred over single 

assessments due to their limited predictive accuracy [11]. 

Comprehensive airway evaluation involves both visible 

and hidden anatomical components, such as the tongue 

base and larynx [2]. Mallampati classes III and IV, along 

with reduced facial angle (≤82.5°), have been identified 

as significant predictors of difficult airway management 

[8, 12-14]. Other parameters such as TMD, sternomental 

distance (SMD), interincisor distance (IID), and reduced 

atlanto-occipital have also been implicated in predicting 

DI [15].  

Artificial intelligence (AI) has increasingly been applied 

to tasks such as disease detection, screening, and 

treatment [16-17]. AI excels in managing large datasets 

and enhancing prediction accuracy through methods like 

feature extraction [18-20]. Ensemble approaches 

combine predictions from multiple models to improve 

overall accuracy and reduce generalization errors [19, 

21]. The ensemble behaves and produces results as 

though it were a single model, even though it consists of 

several underlying models [20]. Notable methods in this 

field include bagging, boosting, stacking, and voting 

[21]. Voting is one of the ensemble algorithms that is 

utilized the most and increases accuracy and robustness 

by combining predictions from separate models [22].  

Recent studies have explored the application of AI in DI 

prediction. Wang et al. developed a semi-supervised 

deep-learning model for difficult airway assessment. The 

model achieved an accuracy of 90.00% and an Area 

Under Curve (AUC) of 0.94 [23]. Kim et al. developed a 

predictive model for difficult laryngoscopy and identified 

the Mallampati score, age, and sternomental distance as 

predictive parameters; they achieved a predicted AUC of 

0.71 and recall (sensitivity) of 0.85 [24]. Yamanaka et al. 

developed ML models using demographic and initial 

airway assessment data for predicting difficult airway 

and first-pass success in the emergency department. They 

were able to surpass conventional methods in terms of 

discrimination ability [25].  

Zhou et al. identified age, sex, weight, height, and BMI 

as the top weighting factors for predicting difficult 

airways. They achieved an AUC > 0.8, accuracy > 90%, 

and precision of 100% using the gradient boosting 

algorithm [26]. Tavolara et al. developed a deep-learning 

model using facial images to identify difficult-to-intubate 

patients; they achieved an AUC of 0.7105, leveraging the 

robust features of multiple face regions for classification 

[22].  

Our study introduces a systematic approach for 

predicting difficult intubation using a comprehensive 

dataset from patients undergoing general anesthesia for 

maxillofacial surgery in Iran. This local dataset is unique 

as it includes a specific facial angle measurement. By 

integrating multiple pre-operative assessments, such as 

the ULBT, Modified Mallampati Test, and cephalometric 

X-ray, with demographic and clinical data, our study 

offers an overview of factors influencing DI prediction. 

Additionally, this is the first time an ensemble model has 

been applied to this type of data, as previous studies have 

only utilized ensemble methods on facial images in this 

era. Our study aims to compare the effectiveness of 

ensemble learning techniques with varied machine 

learning (ML) functions, aiming to enhance the accuracy 

and robustness of the prediction. This approach addresses 

the research gap in using diverse datasets and aims to 

improve patient safety and understandings in airway 

management. 

Research questions 

 How do various machine learning algorithms, 

including ensemble models, differ in predicting 

difficult intubation? 

 What are the significant predictors of difficult 

intubation identified by machine learning 

models? 
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Methods 

Dataset and Preprocessing 

A study by Mahmoodpoor et al. (2012-2013), approved 

by the Ethics Committee of Tabriz University of Medical 

Sciences, aimed to identify factors associated with DI in 

patients undergoing maxillofacial surgeries under general 

anesthesia [8]. The dataset includes features such as age, 

facial angle, Cormack-Lehane grades, ULBT, 

Mallampatic score, sex, BMI, and intubation outcomes, 

among others. The intubation outcomes were classified 

as either easy or difficult based on Cormack-Lehane 

grades. It is necessary to mention that facial angle (FA) 

in these patients was determined via cephalometry X-ray.  

For null and missing data handling purposes, Python 

packages NumPy and Pandas were used. In this process, 

we identified missing or empty columns and assigned 

numerical values to empty cells to represent features, 

according to the team’s expert opinion. The final dataset 

consisted of 19 columns representing features and targets 

and 132 rows representing patients. Then, as mentioned 

previously, the intubation result column, consisting of 

two classes representing easy and difficult intubation, 

was selected as the target variable. 

Then, three normalization techniques were used for the 

dataset: robust normalization, min-max, and standard 

scaler. We decided to use three to be able to assess 

multiple combinations of these three techniques for 

feature selection techniques. MinMax_Scaler (MinMax) 

rescales the data within a specified range, and 

Standard_Scaler (STD) transforms the data to a mean and 

standard deviation of 1. Robust_Scaler (Robust) is less 

accurate in identifying outlier data but rescales the data 

by eliminating the first quartile. After converting the 

dataset to a numeric representation, the target was taken 

out. The target column was then added to each scaled data 

frame (df) after three scaler data frames were instantiated 

and suited to the data using the corresponding 

fit_transform methods. Subsequently, three distinct 

feature selection methods were used to choose the top 

five objects for the target variable. The ANOVA F-value 

(Fscore), chi-square (Chi2), and mutual information 

(Mutual info) were utilized to assess the significance of 

each feature. Using each of these three feature selection 

methods, we were motivated by earlier research on 

feature selection strategies in medical data analysis. Sikri 

et al. showed how feature ranking is affected by pre-

processing data, which is crucial to meeting the chi-

square method's assumptions [27]. Also, a mutual 

information criterion-based feature selection technique 

was presented by Sulaiman and Labadin, who 

demonstrated how well it worked to enhance ML model 

performance [28]. Furthermore, Hoque et al. presented a 

greedy feature selection technique based on mutual 

information theory that showed excellent classification 

accuracy over a number of datasets [29]. These score 

functions were used to generate three feature selection 

objects, which were then fitted to imputed data, and the 

SelectKBest class from the sklearn.feature_selection 

module was used to choose the top 5 features. In (Figure 

1), a graphic illustration of the comprehensive method is 

presented. 

Afterwards, 6 ML algorithms of Decision Tree (DT), K 

Nearest Neighbor (KNN), Naïve Bayes (NB), Random 

Forrest (RF), Support Vector Machine (SVM), and 

Neural Network (NN) were used to classify the dataset. 

Developing each of the models consisted of setting a 

random seed, loading the dataset, extracting the target 

column, converting features, separating data, determining 

class weights, training the classifier model, assessing 

performance with various metrics, and visualizing the 

outcomes. All were steps involved in each technique. For 

the target variable, three feature selection techniques 

were applied, which were followed by three 

normalization techniques. So finally, nine different 

combinations of normalization and feature selection 

techniques were used to assess each algorithm's best 

performance for the target variables. Accuracy, precision, 

recall, F1 score, and specificity were among the metrics. 

Using the same feature selection and normalization 

techniques, an ensemble learning algorithm was trained 

for the target variable in addition to the previously 

mentioned ML algorithms. Individual base classifiers, 

such as DT and RF, were trained on the preprocessed 

dataset using the ensemble learning method, ensuring 

uniformity in feature selection and normalization across 

the ensemble. These base classifiers' predictions were 

then aggregated using a "soft" voting scheme, in which 

the probabilities predicted by each base classifier are 

averaged, or a "hard" voting strategy, in which a majority 

vote decides the final prediction. The performance of the 

ensemble classifiers was then estimated on unseen data 

through the use of cross-validation techniques. We 

computed the accuracy and F1 score and compared them 

with the results from each classifier separately. 

Confusion matrices are also produced to offer a thorough 

examination of the performance of the ensemble model. 

In Table 1, the algorithm, a combination of each feature 

selection and normalization method, selected features for 

each combination, and also performance metrics of each 

combination are available. 

Addressing Research Questions 

In line with the overall objective of the study, we used 

a variety of algorithms and ensemble learning techniques 

to address RQ 1 regarding the performance of ML 

algorithms. RQ 2, regarding the identification of 

important factors associated with DI, was addressed by 

feature selection techniques, which determined the most 

significant features contributing to the prediction of DI. 

Also, in (Figure 2), the schematic combination between 
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normalization and feature selection methods that lead to 

the final results is presented. 

 

Figure 1- Illustration of the comprehensive method 

 

Figure 2- Combination between normalization and feature selection methods 

Results 

As mentioned previously, (Table 1) presents the 

performance of various ML algorithms in predicting 

difficulty in intubation, emphasizing the impact of 

different combinations of feature selection and 

normalization techniques on predictive accuracy. Across 

the algorithms tested, DT, RF, Naïve Bayes, Neural 

Network, Support Vector Machine, KNN, and an 

ensemble method by voting were employed. These 

algorithms were evaluated based on key metrics, 

including accuracy, precision, sensitivity, and specificity.  

Comparing the results, the mutual information feature 

selection method, coupled with robust scaler 

normalization, consistently produced high accuracy 

across several algorithms. For instance, with DT, this 

combination yielded an accuracy of 0.84, precision, 

sensitivity, and specificity of 0.95. Similar trends were 

observed for RF and KNN, achieving accuracies of 0.84 

and 0.81 and the other three metrics of 1.0. Additionally, 

SVM demonstrated competitive performance, 

particularly with mutual information feature selection 

and MinMax normalization. With this combination, SVM 

achieved an accuracy of 0.79, precision of 0.94, 

sensitivity of 0.95, and specificity of 0.93. This indicates 

that SVM, when optimized with appropriate feature 
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selection and normalization techniques, can also provide 

reliable prediction of intubation difficulty. 

However, this was not always true among other 

algorithms. With the mentioned combination, NB 

exhibited relatively lower performance across different 

algorithms. For instance, with Chi2 feature selection and 

MinMax normalization, NB achieved an accuracy of 

0.69. Similarly, with Mutual Information feature 

selection and Robust normalization, NB attained an 

accuracy of 0.81, precision of 0.83, sensitivity of 0.52, 

and specificity of 0.89. These results suggest that NB 

may not be as effective in accurately predicting 

intubation difficulty as other algorithms tested.  

Also, among the algorithms, NN showed its best 

performance via another combination. At the same time, 

mutual information was still the choice. The STD scalar 

combination with it performed extremely well, with an 

accuracy of 0.81, precision of 0.93, and sensitivity and 

specificity of 0.82 and 0.96, respectively.  

Furthermore, the ensemble method, which included the 

best and most repeated combinations, namely, mutual 

information and robust normalization, achieved an 

accuracy of 0.82, precision of 0.94, sensitivity of 0.78, 

and specificity of 0.98. This underscores the 

effectiveness of ensemble learning in combining the 

strengths of multiple classifiers to enhance predictive 

performance.  

In summary, considering the overall performance, the 

mutual information feature selection method paired with 

robust normalization emerges as the most effective 

combination across multiple algorithms, particularly for 

DT, RF, and KNN. However, for NB and NN, other 

combinations, such as Chi2 feature selection with 

MinMax normalization and mutual information feature 

selection with standard scalar normalization, 

respectively, displayed competitive performance. 

Therefore, the choice of the best combination may 

depend on the specific algorithm and dataset 

characteristics. 

(Table 2) demonstrates the P values associated with 

each feature, which indicates their association with 

binary classes. According to our binary target, each P 

value is computed based on its association with Class 1, 

representing easy intubation. The p-value associated with 

angle input is 0.4, recommending no significant 

association between this feature and class 1 and also 

recommending that this feature is more likely to be 

associated with class 2, DI. 'facial_angle+ULBT' P value 

is 0.03, showing a significant association between this 

feature and class 1. The p-value associated with 

'facial_angle+mallempati' is 0.02, also suggesting the 

association with class 1. Intubation_try and BMI P values 

are 0.3 and 0.6, respectively, indicating that they are more 

likely to be associated with class 2.

Table 1- Feature Selection, Normalization, and Performance Metrics for Intubation Difficulty Target 

Algorithm Feature 

Selection 

Normalization Obtained Features from “Feature 

Selection” and “Normalization” 

combination 

Accuracy Precision Sensitivity Specificity 

Decision 

Tree 

Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.65 0.71 0.65 0.67 

STD ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.71 0.82 0.82 0.79 

Robust ['facial_angle', 

'facial_angle+mallempati+UL

BT', 'mallempati', 'sex', 

'height'] 

0.73 0.86 0.86 0.84 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.71 0.82 0.82 0.79 

STD 0.71 0.82 0.82 0.79 

Robust 0.71 0.82 0.82 0.79 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.84 0.95 0.95 0.95 

STD 0.84 0.95 0.95 0.95 

Robust 0.84 0.95 0.95 0.95 

Random 

Forest 

Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.68 0.72 0.60 0.70 

STD ['facial_angle', 

'facial_angle+ULBT', 

0.75 0.86 0.78 0.87 
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'facial_angle+mallempati', 

'sex', 'height'] 

Robust ['facial_angle', 

'facial_angle+mallempati+UL

BT', 'mallempati', 'sex', 

'height'] 

0.74 0.94 0.86 0.96 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.75 0.86 0.78 0.87 

STD 0.75 0.86 0.78 0.87 

Robust 0.75 0.86 0.78 0.87 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.84 1.0 1.0 1.0 

STD 0.84 1.0 1.0 1.0 

Robust 0.84 1.0 1.0 1.0 

Naïve 

Bayes 

Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.69 0.75 0.39 0.82 

STD ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.78 0.79 0.39 0.88 

Robust ['facial_angle', 

'facial_angle+mallempati+UL

BT', 'mallempati', 'sex', 

'height'] 

0.74 0.80 0.34 0.90 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.78 0.79 0.39 0.88 

STD 0.78 0.79 0.39 0.88 

Robust 0.78 0.79 0.39 0.88 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.81 0.83 0.52 0.89 

STD 0.81 0.83 0.52 0.89 

Robust 0.81 0.83 0.52 0.89 

Neural 

Network 

Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.78 0.78 0.10 1.0 

STD ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.76 0.81 0.26 0.96 

Robust ['facial_angle', 

'facial_angle+mallempati+UL

BT', 'mallempati', 'sex', 

'height'] 

0.79 0.88 0.43 1.0 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.76 0.74 0.10 1.0 

STD 0.76 0.81 0.26 0.96 

Robust 0.78 0.80 0.21 0.97 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.80 0.91 0.73 0.95 

STD 0.81 0.93 0.82 0.96 

Robust 0.80 0.92 0.73 0.97 

Support 

vector 

Machine 

Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.81 0.79 0.39 0.88 



Archives of Anesthesiology and Critical Care (In Press); x(x): xx-xx.  7 

STD ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.79 0.79 0.39 0.88 

Robust ['facial_angle', 

'facial_angle+mallempati+UL

BT', 'mallempati', 'sex', 

'height'] 

0.68 0.74 0.60 0.73 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.82 0.80 0.26 0.95 

STD 0.79 0.79 0.39 0.88 

Robust 0.81 0.80 0.26 0.94 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.79 0.94 0.95 0.93 

STD 0.82 0.81 0.34 0.92 

Robust 0.82 0.83 0.34 0.95 

KNN Chi2 MinMax ['mallempati', 'facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex'] 

0.76 0.80 0.34 0.90 

STD ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.79 0.79 0.13 0.99 

Robust ['facial_angle', 'facial 

angle+mallempati+ULBT', 

'mallempati', 'sex', 'height'] 

0.82 0.75 0.10 0.98 

Fscore MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'sex', 'height'] 

0.81 0.79 0.13 0.99 

STD 0.79 0.79 0.13 0.99 

Robust 0.81 0.79 0.13 0.99 

Mutual 

info 

MinMax ['facial_angle', 

'facial_angle+ULBT', 

'facial_angle+mallempati', 

'intubation_try', 'bmi'] 

0.74 0.89 0.65 0.95 

STD 0.77 0.89 0.89 0.97 

Robust 0.81 1.0 1.0 1.0 

Ensemble 

of  

Mutual 

info 

Robust ['facial_angle', 

'facial_angle+ULBT', 'facial 

angle+mallempati', 

'intubation_try', 'bmi'] 

0.82 0.94 0.78 0.98 

Table 2- Feature association with binary classes 

Feature 'facial_angle' 'facial_angle+ULBT' 'facial_angle+mallempati' 'intubation_try' 'bmi' 

P value 0.4 0.03 0.02 0.3 0.6 

 

Discussion 

Our study aimed to develop ML and ensemble learning 

models based on optimized combinations of feature 

selection and normalization methods for predicting DI. 

We used the data of 132 patients who underwent elective 

maxillofacial surgeries under general anesthesia, 

including cephalometry, some tests, and demographic 

data. 

Our study's results demonstrate that among various ML 

algorithms for predicting difficulty in intubation, the 

mutual information feature selection method, coupled 

with robust scaler normalization, consistently produced 

high accuracy across several algorithms. Several studies 

have shown that the beneficial utility of various feature 

selection or normalization algorithms, or even a 

combination of them, is not totally forgotten, even though 

it may not have been totally reported in our area of 

interest. As for audiogram analysis, utilizing the various 

methods or a combination of them resulted in an accuracy 

of 0.93 in the KNN algorithm [30]. Also, for the aim of 

enhancing Internet of Things (IOT) botnet attack 

detection with ML methods, it was shown that using 

mutual information in combination with other 

preprocessing necessities, such as normalization, 

represents accuracy scores that exceed the baseline often 

[31].  



8 Naderian et al.: Artificial Intelligence and Difficult Intubation 

In terms of ML model performance, our study revealed 

that the RF model emerged as the top performer, 

exhibiting an accuracy of 0.84 along with flawless 

precision, sensitivity, and specificity scores of 1.0 each. 

Balanced RF, which in ‘Balanced’ refers to addressing 

imbalanced class distribution, had also shown the second 

highest performance in the prediction of difficult 

laryngoscopy, with the mean AUC ranging from 0.90 to 

0.98 [24] and an accuracy of 0.93 along with a precision 

of 0.85, sensitivity of 0.73, and specificity of 0.99 in the 

prediction of preclinical airway management [31]. 

Following closely behind was the ensemble of five ML 

models, excluding NN, with an accuracy of 0.82. Despite 

a slightly lower accuracy compared to RF, this ensemble 

showcased remarkable precision and specificity. The 

utilization of ensemble methods has been under 

investigation recently. In our area of interest, the use of a 

light gradient boosting machine, which is an ensembled 

algorithm that sequentially adds the weak gradient 

boosting to make a stronger prediction of difficult 

laryngoscopy with an AUC of 0.71 and sensitivity of 0.85 

[24]. An ensemble model of ML models also showed a 

maximum c-statistic of 0.74, with a sensitivity of 0.67 

and a specificity of 0.70 among other basic ML models. 

Predicting difficult airway [25] and an ensemble of 

convolutional neural networks through majority voting 

resulted in an AUC of 0.7105 for the prediction of DI 

[32]. The NN model demonstrated its strength with an 

accuracy of 0.81, contributing significantly to the 

ensemble's diversity and resilience. DTs also proved their 

worth with an accuracy of 0.81 and balanced 

performance across other metrics, aligning with the 

ensemble's collective strength. Neural networks have 

been used in the past few years in the era of airway 

management, mostly being developed for photographic 

images with an accuracy of 0.90 [23], for chest X-rays in 

endotracheal tube (ETT) placement checking with an 

accuracy of 0.89 [33], and even on numerical datasets for 

the prediction of DI in thyroid surgery, with an accuracy 

of 0.90 [26]. 

KNN, SVM, and NB followed suit. Notably, SVM 

showcased exceptional specificity, while NB exhibited 

high precision. However, the SVM model slightly lagged 

in terms of accuracy compared to other models.  

Among the top 5 features related to DI, the Upper Lip 

Bite Test and Mallampati test score are the most 

commonly detected and discussed factors, which are the 

assessment of mouth opening by instructing the patient to 

bite their upper lip with their lower incisors [34] and the 

classification grade of visibility of oral and 

oropharyngeal structures during a maximal mouth 

opening and tongue protrusion, respectively [35]. As 

shown in several studies that were undertaken to validate 

these two factors as predictors for DI, the accuracy of 

ULBT as a predictor was reported to be up to 0.81%, and 

for Mallampati, up to 0.66% [36]. Also, these two factors 

have undergone sensitivity and specificity tests for 

approval of their prediction roles in DI. The ULBT 

yielded sensitivity values of 77%, 95.4%, and 75% and 

specificity scores of 93%, 50.8%, and 54% in three 

different trials [37-39]. Similarly, two of these studies 

indicated that the Mallampati test had a sensitivity of 

66% and a specificity of 95.5%, with 96% and 54.8%, 

respectively [37-38]. Also, it should be noted that the 

combination of these two tests was reported sometimes 

less consistent than one individual and sometimes more 

effective than one [36]. 

Furthermore, in AI-interfered studies, Mallampati was 

also reported as one of the top five predictors of DI 

alongside the BMI [24, 26]. The facial angle is one 

important component that also needs to be investigated. 

Nonetheless, the absence of research focusing on this 

particular component suggests the necessity of 

conducting a thorough investigation in this field. 

Currently, the study behind the collection of the present 

study’s dataset serves as the main source of reference [8]. 

Notably, with a sensitivity of 87.5%, this study 

demonstrates the importance of the face angle in 

predicting DI [8]. This discovery highlights the face 

angle's potential significance as a prognostic marker for 

DI situations and clarifies its applicability in clinical 

practice. However, more investigation through other 

research is necessary to confirm and expand on these 

results, improving our comprehension of the part that 

facial anatomy plays in intubation challenges. 

Conclusion 

To summarize, our research investigated many ML 

systems that utilize distinct feature selection and 

normalization techniques to forecast intubation difficulty. 

With accuracies ranging from 0.81 to 0.84, mutual 

information feature selection combined with robust scaler 

normalization proved to be consistently effective, 

especially when used with DTs, RFs, and K Nearest 

Neighbors. Certain algorithms performed better than 

others, although some had very high specificity. Notably, 

the ensemble robustness and diversity were much 

enhanced using the neural network model. 

Furthermore, we emphasized the significance of 

particular characteristics, such as the Mallampati score 

and the Upper Lip Bite Test, in predicting challenging 

intubations, with studies reporting verified sensitivity and 

specificity ratings. Furthermore, our analysis highlighted 

the possible importance of the facial angle, which our 

dataset's 87.5% sensitivity verified. Limitations include a 

short dataset size and the requirement for more 

validation, notwithstanding our findings. However, our 

work establishes a baseline for further investigation, 

demonstrating the potential of ML to enhance clinical 

judgment in airway control. 
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